

Vyakarana Documentation

This is the documentation for Vyakarana, a program that derives Sanskrit words.
To get the most out of the documentation, you should have a working knowledge
of Sanskrit.

Important

All data handled by the system is represented in SLP1 [http://sanskrit1.ccv.brown.edu/Sanskrit/Vyakarana/Dhatupatha/mdhvcanidx/disp1/encodinghelp.html]. SLP1 also uses
the following symbols:

	'\\' to indicate anudātta

	'^' to indicate svarita

	'~' to indicate a nasal sound

Unmarked vowels are udātta.

Background

This is a high-level overview of the Ashtadhyayi and how it works.

	Introduction
	The Ashtadhyayi

	The Dhatupatha

	Rule Types
	Ordinary rules

	Metarules

	Terms and Data
	Sounds

	Saṃjñā

	it tags

	Sounds
	Savarṇa sets

	Single vowels

	Pratyāhāra

	asiddha and asiddhavat
	asiddha

	asiddhavat

	Glossary
	Sanskrit

	English

	it tags

Architecture

This describes the overall architecture of the system.

	Design Overview
	Philosophy

	How the program works

	Inputs and Outputs
	Terms

	States

	Modeling Rules
	Filters

	Operators

	Selecting Rules
	Rank

	Conflict resolution

	Defining Rules
	Rule tuples

	@inherit

	Rule conditions

	Converting tuples to rules

API Reference

This contains information about specific classes, functions, and methods.

	API
	Lists

	Inputs and Outputs

	Filters

	Operators

	Rules and Rule Stubs

	Texts

Introduction

This program has two goals:

	To generate the entire set of forms allowed by the Ashtadhyayi without over-
or under-generating.

	To do so while staying true to the spirit of the Ashtadhyayi.

Goal 1 is straightforward, but the “under-generating” is subtle. For some
inputs, the Ashtadhyayi can yield multiple results; ideally, we should be able
to generate all of them.

Goal 2 is more vague. I want to create a program that defines and chooses its
rules using the same mechanisms used by the Ashtadhyayi.

In other words, I want to create a full simulation of the Ashtadhyayi.

The Ashtadhyayi

The Ashtadhyayi (Aṣṭādhyāyi) is a list of about 4000 rules. It has ordinary
rules, which take some input and yield some output(s), and metarules,
which describe how to interpret other rules. If Sanskrit grammar is a factory,
then its ordinary rules are the machines inside and its metarules are the
instructions used to build the machines.

Given some input, the Ashtadhyayi applies a rule that changes the input in
some way. The output of the rule is then sent to another rule, just as items
on the assembly line move from one machine to the other. This continues until
there’s no way to change the result any further. When this occurs, the process
is complete. The result is a correct Sanskrit expression.

This documentation makes reference to various rules from the Ashtadhayi. All
rules are numbered x.y.z, where:

	x is the book that contains the rule. There are 8 books in total.

	y is the chapter that contains the rule. Each book has 4 chapters.

	z is the rule’s position within the chapter.

For example, 1.1.1 is the first rule of the text, and 8.4.68 is the last.

The Dhatupatha

If the Ashtadhyayi is the stuff inside the factory, then the Dhatupatha
(Dhātupāṭha) is the raw material that enters the factory. It is a list of
about 2000 verb roots, each stated with a basic meaning:

1.1 bhū sattāyām

bhū in the sense of existence (sattā)

Modern editions of the Dhatupatha are numbered x.y, where:

	x is the root’s verb class (gaṇa). There are 10 classes in total.

	y is the root’s position within the gaṇa.

Thus bhū is entry 1 in gaṇa 1; it’s the first root in the list.

There is no single version of the Dhātupāṭha. I used a version I found on
Sanskrit Documents [http://sanskritdocuments.org] (specifically, this file [http://sanskritdocuments.org/doc_z_misc_major_works/dhatupatha_svara.itx]) and made some small
corrections. So far, it’s been totally competent for the task.

Rule Types

The Ashtadhyayi has ordinary rules, which take some input and yield some
output(s), and metarules, which describe how to interpret other rules.

Note

The types loosely correspond to the traditional classification, but there
is no 1:1 mapping.

Ordinary rules

Ordinary rules, or just “rules” for short, are the bulk of the Ashtadhyayi.
These rules accept a list of terms as input, where a term is some group
of sounds. For example, the input to a rule might be something like
ca + kṛ + a. Outputs have the same form.

There are various kinds of ordinary rules;

	rules that substitute

	rules that designate

	rules that insert

	rules that block

These are described below.

Substituting

Most rules substitute one term for another. They look something like this:

C is replaced by X (when L comes before C) (when C comes before R).

Here, L, C, R, and X are terms:

	L is the left context and appears immediately before C. Not all
rules use it.

	R is the right context and appears immediately after C. Not all
rules use it.

	C is the center context. It defines where the substitution occurs.

	X is the replacement. It defines the new value for C.

For each input, we look for a place where we have L, C, and R in order.
Then we replace C with X.

For example, rule 6.1.77 of the Ashtadhyayi states that simple vowels (or
ik, if we use a pratyāhāra) are replaced by semivowels (yaṇ) when
followed by other vowels (ac). Given this input:

ca + kṛ + a

we have a match when C = ṛ and R = a. (L is unspecified, so we ignore
it.) We replace with X = r to get our output:

ca + kṛ + a → ca + kr + a

Designating

Some rules designate a term by assigning some name to it. They look
something like this:

C is called X (when L comes before C) (when C comes before R).

where X is the name given to the center context C.

For example, rule 1.3.1 states that items in the Dhatupatha are called
dhātu (“root”) Given this input:

bhū

we have a match where C = bhū, with L and R unspecified. We then give
bhū the name “dhātu.” In other words, bhū is a dhātu.

Inserting

Of the rules left, most insert:

X is inserted after L (when L comes before R).

For example, rule 3.1.68 states that a is inserted after a verb root when
the root is followed by a certain kind of verb ending. Given this input:

car + ti

we have a match where L = car and R = ti. So, we insert X = a to get
our output:

car + ti → car + a + ti

Blocking

Some rules are used to block other rules from occurring:

C does not accept rule X (when L comes before C) (when C comes before R).

For example, rule 1.1.5 blocks guṇa substitution if the right context has
a certain property.

Other rules

A few rules are combinations of the ones above. For example, rule 3.1.80
inserts one term then performs a substitution on another.

Metarules

Metarules define the metalanguage used by the Ashtadhyayi. Since we’re using
our own metalanguage (Python), many of these metarules are modeled implicitly.

There are basically two kinds of metarules:

	rules that help us interpret other rules

	rules that provide useful context for other rules

These are described below.

Interpreting

Most metarules are intended to help us understand what rules in the
Ashtadhyayi mean. Such rules are called paribhāṣā. Some examples:

Terms in case 6 define the center context. (1.1.49)

Terms in case 7 (tasmin) define the right context. (1.1.66)

Terms in case 5 (tasmāt) define the left context. (1.1.67)

If X is just a single letter, then only the last letter of C is
replaced. (1.1.52)

Contextualizing

All other metarules provide some extra context for other rules. Such rules
are called adhikāra. Some examples:

In the rules below, all inserted terms are called pratyaya. (3.1.1)

In the rules below, L and R together are replaced by X. (6.1.84)

Terms and Data

The rules of the Ashtadhyayi accept a list of terms as input and produce
a new list of terms as output. Let’s start by discussing what terms are and
what information they contain.

Throughout this section, our working example will be ca + kṛ + a, a sequence
of three terms. Depending on the data attached to these terms, this sequence
can yield a variety of outputs:

	cakāra (“he/I did”, perfect tense)

	cakara (“I did”, perfect tense)

	cakra (“he did”, perfect tense)

Sounds

Our example has three terms, each of which represents a piece of sound.
These “pieces of sound” usually represent morphemes, but that’s not always
the case.

We’ll have more to say about these sounds later, but for now they’re
pretty straightforward.

Saṃjñā

Each term has a variety of designations (saṃjñā) associated with it.
These saṃjñā, which are assigned by the Ashtadhyayi itself, enable
some rules and block others. By assigning names to different terms and
changing which rules can be used, the system can guide the original
input toward the desired output.

Our example uses the following saṃjñā:

	ca
	kṛ
	a

	abhyāsa
	dhātu
	pratyaya

	_
	_
	vibhakti

	_
	_
	tiṅ

	_
	_
	ārdhadhātuka

In addition, ca + kṛ together are called both abhyasta and
aṅga.

Some examples of what these saṃjñā do:

	dhātu allows the rule that creates the abhyāsa.

	abhyāsa allows a rule that changes ka to ca.

	ārdhadhātuka allows a rule that strengthens the vowel of the term before it.

it tags

Terms also use a second set of designations, which we can call it tags.
Just a shirt might have a label that tells us how to wash it, a term might
have an it that tells us how it behaves in certain contexts.

For example, kṛ has two it tags. The first is ḍu, and it allows kṛ to
take a certain suffix. The second is ñ, and it allows kṛ to use both
parasmaipada and ātmanepada endings in its verbs. it tags
are attached directly to the term of interest, like so:

ḍukṛñ

We can remove it tags by applying some metarules. For some term T, the
following are it tags:

	nasal vowels (1.3.2)

	at the end of T:
	consonants (1.3.3)

	but not {t, th, d, dh, n, s, m} when T is a vibhakti (1.3.4)

	at the beginning of T:
	ñi, ṭu, and ḍu (1.3.5)

	at the beginning of T, if T is a pratyaya:
	ṣ (1.3.6)

	c, ch, j, jh, ñ, ṭ, ṭh, ḍ, ḍh, ṇ (1.3.7)

	l, ś, k, kh, g, gh, ṅ if not a taddhita suffix

it tags are not letters in any meaningful sense, and they have no meaning
outside of the metalanguage of the Ashtadhyayi. In other words, all they do
is describe certain properties; they have no deeper linguistic meaning and are
not a fundamental part of Sanskrit. So if you see a term like ḍukṛñ, you
should read it as:

kṛ with the it tags ḍu and ñ.

The it tags are often stated with the word it after them. Thus ḍvit and
ñit. A term stated with its it letters is called the upadeśa of the
term. Thus ḍukṛñ is the upadeśa of the root kṛ.

Usage

it tags are basically just saṃjñā that are expressed more tersely.

To illustrate how alike these two are, let’s return to our ca + kṛ + a
example. We saw above that this sequence can yield three different results.
But the result depends on the saṃjñā and it tags applied to the suffix a.
As you read on, note how the different saṃjñā and it tags interact.

	If the upadeśa is just a, then rule 1.2.5 tags the suffix with kit.
This prevents guṇa. After a few more rules, we get cakra for our
result.

	If the upadeśa is ṇal, the suffix has ṇit, which causes vṛddhi.
After a few more rules, we get cakāra for our result.

	If the upadeśa is ṇal, the suffix has ṇit. But if the suffix has
uttama as a saṃjñā – that is, if it is in the first person – then ṇit
is used only optionally. If we reject ṇit, then the ārdhadhātuka-saṃjñā
causes guṇa. After a few more rules, we get cakara for our result.

The glossary describes the most common it tags and some
of the roles they perform. Many it tags are overloaded to provide a variety
of different functions.

Sounds

Sandhi is an important part of Sanskrit. Thus sandhi is an important part of
the Ashtadhyayi. The metalanguage of the Ashtadhyayi gives us a few ways to
describe different groups of sounds as tersely as possible.

Savarṇa sets

First, a way to describe related sounds:

Vowels and semivowels, as well as consonants with u as an it letter,
refer to all savarṇa (“homogeneous”) terms. (1.1.69)

Savarṇa has a precise definition, but generally it refers to sounds that are
similar in some way. Anyway, some examples:

	a refers to a and ā

	i refers to i and ī

	ku refers to all sounds in kavarga

	cu refers to all sounds in cavarga

a and i also refer to the corresponding nasal vowels, but generally we can
ignore the nasal sounds entirely. (The rule mentions semivowels because some
semivowels can be nasal, too.)

Single vowels

In the grammar, a always refers to both a and ā. To refer to just the
sound a, we use the following rule:

A vowel stated with t refers to just that vowel. (1.1.70)

Some examples:

	at refers to just a

	āt refers to just ā

These terms refer to nasal sounds too, but generally we can ignore the nasal
sounds entirely.

Pratyāhāra

Finally, a way to refer to other groups of interest. Consider the following
list:

	a i u ṇ

	ṛ ḷ k

	e o ṅ

	ai au c

	ha ya va ra ṭ

	la ṇ

	ña ma ṅa ṇa na m

	jha bha ñ

	gha ḍha dha ṣ

	ja ba ga ḍa da ś

	kha pha cha ṭha tha ca ṭa ta v

	ka pa y

	śa ṣa sa r

	ha l

These rows are usually called the Shiva Sutras. They were arranged
deliberately so that similar sounds would appear next to each other.

Here’s how we use the list. Each row has a list of sounds that ends with an
it tag. We take advantage of the following metarule:

In lists like the one above, an item stated with an it refers to all
the items between them, too. (1.1.71)

and use it to produce concise terms for various Sanskrit sounds.

For example, the ha on row 5, when used with it letter l on row 14,
creates the term hal. And this hal refers to all sounds between ha and
that it letter l. That is, it refers to the set of Sanskrit consonants.

Such groups are called pratyāhāra. Other examples:

	ac refers to all vowels. By rule 1.1.69, a refers to ā, and so on for
the other vowels.

	khar refers to all unvoiced consonants.

	yaṇ refers to all semivowels.

	al refers to all sounds.

Certain sounds and it letters are used in the list twice, but context is
enough to tell us how to interpret a given pratyāhāra.

asiddha and asiddhavat

When a rule applies to some input to yield some output, the input is discarded
and all future applications act on the output. But sometimes the original input
preserves some information that we want to keep.

asiddha

TODO

asiddhavat

Consider the following input:

śās + hi

By 6.4.35, śās becomes śā when followed by hi. By 6.4.101, hi becomes
dhi when preceded by a consonant. If one applies, the other is blocked. But
to get the correct form śādhi, we have to apply both rules together.

The Ashtadhyayi solves this problem by placing both rules in a section called
asiddhavat. For any two rules A and B within this section, the results of
A are invisible to B (or “as if not completed”, i.e. a-siddha-vat). This
allows each rule to act without being blocked by the other.

In practical terms, this means that each term has at least two values
simultaneously: one accessible only to the non-asiddhavat world (e.g. śā)
and one accessible only to the asiddhavat world (śās).

To see how the program handles these problems, see the data spaces stuff in Inputs and Outputs.

Note

Issues of asiddha and asiddhavat are subtle and outside the scope of
this documentation. Those interested might see rule 6.4.22 [http://avg-sanskrit.org/avgupload/dokuwiki/doku.php?id=sutras:6-4-22] of the
Ashtadhyayi or section 3.5 of Goyal et al. [http://sanskrit1.ccv.brown.edu/Sanskrit/Symposium/Papers/AmbaSimulation.pdf]

Glossary

Sanskrit

Generally, these are used to describe concepts from the grammatical tradition.

	aṅga

	_

	anubandha

	See it.

	abhyāsa

	If a term is doubled, abhyāsa refers to the first part.

	abhyasta

	If a term is doubled, abhyasta refers to the two parts together.

	ātmanepada

	The last 9 tiṅ suffixes.

	ārdhadhātuka

	Refers to certain kinds of verb suffixes.

	Aṣṭādhyāyī	Ashtadhyayi

	A list of rules. It takes some input and produces one or more valid
Sanskrit expressions.

	it

	An indicatory letter.

	upadeśa

	A term stated with its indicatory letters (it).

	guṇa

	An operation that strengthens a vowel to the “medium” level
(a, e, o, but ṛ and ṝ become ar). Also refers to the result
of this operation.

	vṛddhi

	An operation that strengthens a vowel to the “strong” level
(ā, ai, au, but ṛ and ṝ become ār). Also refers to the result
of this operation.

	tiṅ

	Refers to one of the 18 basic verb suffixes: 9 in parasmaipada
and 9 in ātmanepada.

	dhātu

	A verb root.

	Dhātupāṭha	Dhatupatha

	A list of verb roots. These roots are used as input to the Ashtadhyayi.

	parasmaipada

	The first 9 tiṅ suffixes.

	pratyaya

	A suffix.

	vibhakti

	A triplet of noun/verb endings. Also, an ending within that triplet.

	saṃjñā

	A technical name that is assigned to a group of terms. For
example, pratyaya is a saṃjñā for the set of all suffixes.

	sārvadhātuka

	Refers to certain kinds of verb suffixes. Generally, tiṅ and
śit suffixes receive this saṃjñā.

	sthānī

	In a substitution, the term where the substitution occurs.

 Design Overview

Design Overview

Philosophy

As much as possible, the program follows the principles of the Ashtadhyayi. It
makes use of almost all of its technical devices, and many of its methods and
classes have 1:1 correspondence to particular concepts from the grammatical
tradition. This is the case for a few reasons:

	We can model a system that’s well-known and (fairly) easy to understand.

	We can take advantage of the tradition’s prior work.

	We can make it easier to prove certain properties of the system.

The program’s performance is currently just OK, but only a few parts of it use
any kind of optimization. With more aggressive caching it can probably run
respectably, but if it stays bad (and if those problems are due to language
features), I will probably port it to Scala or some other statically-typed
functional language.

How the program works

We pass a single input to ashtadhyayi.Ashtadhyayi.derive(), the most
interesting method in the Ashtadhyayi class. This input is stored on
an internal stack. As long as the stack is non-empty, we:

	Pop an input off of the stack.

	Find all rules such that that:

	the rule has space to apply to the input

	if applied, the rule would yield at least one new result.

Instead of applying these rules simultaneously, we apply just one then
repeat the loop.

	Pick the rule from (2) with highest rank. If no rules were found in (2),
send the input to the asiddha module and yield the results.

Note

The asiddha module is basically legacy code. Currently it’s
too complicated to model easily, but in the future it will be modeled
like the rest of the system.

	Apply the rule and push the results back onto the stack.

In other words, the main function of interest is a generator that loops over
a stack and yields finished sequences.

The following pages explore elements of this process in detail. In particular:

	what inputs and outputs look like (Inputs and Outputs)

	determining whether a rule has “space to apply” (Modeling Rules)

	ranking rules (Selecting Rules)

	defining rules tersely (Defining Rules)

 Inputs and Outputs

Inputs and Outputs

With rare exception, all data handled by the system is processed functionally.
That is, every operation applied to an input must create a new input, without
exception. The program follows this principle for two reasons:

	branching. Since one input can produce multiple outputs, it’s easier to just
create new outputs and ensure that no implicit information can be propagated.

	basic sanity. This makes the system easier to model mentally.

Terms

A rule accepts a list of terms as input and returns the same as output.
A term is an arbitrary piece of sound and usually represents a morphere, but
that’s not always the case.

In the Ashtadhyayi, these terms are usually called upadeśa, since
the grammar is taught (upadiśyate) by means of these terms, And in the
program, these terms are usually represented by instances of the
Upadesha class. These classes provide some nice
methods for accessing and modifying various parts of the term. For details,
see the documentation on the Upadesha class.

Data spaces

As mentioned earlier, terms in the Ashtadhyayi often contain
multiple values at once. Within the program, these are modeled by data
spaces, which make it easier to access and manipulate these values. These
data spaces are basically just tuples; instead of containing a single data
value, each term contains a variety of values that are valid simultaneously.

TODO

States

A State is a list of terms. Like the other
inputs used by the grammar, states are modified functionally. For details, see
the documentation on the State class.

 Modeling Rules

Modeling Rules

As a reminder, this is how ordinary rules are usually
structured:

	C is replaced by X (when L comes before C) (when C comes before R).

	C is called X (when L comes before C) (when C comes before R).

	X is inserted after L (when L comes before R).

	C does not accept rule Y (when L comes before C) (when C comes before X).

We can rewrite these templates into a more general form:

When we see some context window W, perform some operation O.

where W is an arbitrary set of contexts and O is an abstraction for some
arbitrary change, such as:

	replacing C with X

	calling C by the name of X

	inserting X after L

	blocking rule Y on C

With this general form in mind, we can decompose a rule model into two parts:

	matching a context. To do so, we use filters.

	applying an operation. To do so, we use operators.

Or in other words: filters test and operators transform.

Filters

A Filter is a callable object that accepts a state
and index, performs some test on state[index], and returns True or
False as appropriate. For example, the samjna
filter returns whether or not state[index] has some particular samjna.

If all of a rule’s filters return True, then the rule has scope to apply.

In older version of the code base, filters were functions that accepted an
Upadesha and returned True or False. This
approach changed for two reasons:

	A few filters require global access to the state. If they accept just a
single term, there`s no way to get information on the rest of the state.
So filters were changed to accept state-index pairs.

	Usually, a rule`s filter is a combination of two other filters. One nice
way to do this is to use Python’s unary operators (e.g. &, |). But
custom operators are supported only for class instances. So filters were
changed to class instances.

Parameterized filters

Parameterized filters group filters into families and make it easier to
create a lot of related filters. Specifically, they are classes that can be
instantiated (parameterized) by passing arguments.

For example, the al class tests whether a term
has a particular final letter:

ac = al('ac')
ak = al('ak')
hal = al('hal')

Note

Parameterized filters have lowercase names for historical reasons. Also,
they better match the names for unparameterized filters, e.g.
al('i') & ~samyogapurva.

Combining filters

We can create new filters by using Python’s unary operators.

We can invert a filter (“not”):

ekac: having one vowel
anekac = ~ekac

take the intersection of two filters (“and”):

samyoga: ending in a conjunct consonant
samjna('dhatu'): having 'dhatu' samjna
samyoga_dhatu = samyoga & samjna('dhatu')

and take the union of two filters (“or”):

raw('Snu'): raw value is the 'nu' of e.g. 'sunute', 'Apnuvanti'
samjna('dhatu'): having 'dhatu' samjna
raw('BrU'): raw value is 'BrU'
snu_dhatu_bhru = raw('Snu') | samjna('dhatu') | raw('BrU')

Operators

An Operator is a callable object that accepts a
state and index, performs some operation, and returns the result. For example,
the guna operator applies guna to
state[index] and returns a new state.

Parameterized operators

Parameterized operators group operators into families and make it easier to
create a lot of related operators. Specifically, they are classes that can be
instantiated (parameterized) by passing arguments.

For example, the al_tasya class does arbitrary
letter substitution:

ku h: k, kh, g, gh, ṅ, h
cu: c, ch, j, jh, ñ
kuhos_cu = al_tasya('ku h', 'cu')

f: ṛ, ṝ
at: a
ur_at = al_tasya('f', 'at')

Note

Parameterized operators have lowercase names for historical reasons.
Also, they better match the names for unparameterized operators.

 Selecting Rules

Selecting Rules

Rank

Conflict resolution

 Defining Rules

Defining Rules

The machinery behind a given rule is often complex and complicated. But by
abstracting away the right things, we can greatly reduce the code required
per rule, often to just one line in length.

Rule tuples

A rule tuple is a 5-tuple containing the following elements:

	the rule name, e.g. '6.4.77'

	the left context

	the center context

	the right context

	the operator to apply

These tuples contain the essential information needed to create a full rule,
but they are often underspecified in various ways. Some examples:

	A context can take the value True, which means that the rule should use
the context defined for the previous rule.

	A context can take the value None, which means that it uses the base
filter (see below).

	A context can be an arbitrary string. All contexts are post-processed with
auto(), which converts them into actual
Filter objects.

	An operator can be an arbitrary object, usually a string. The program
usually does a good job of transforming these “operator strings” into actual
Operator objects. For example, if the operator
is just 'Nit', the program recognizes that this is an it and that the
rule is assigning a saṃjñā.

Rule tuples are usually contained in RuleTuple
objects, but most rules are just stated as tuples.

Some example rule tuples, from throughout the program:

Analogous extension of ṅit
('1.2.4', None, f('sarvadhatuka') & ~f('pit'), None, 'Nit'),

Adding vikaraṇa "śap"
('3.1.77', F.gana('tu\da~^'), None, None, k('Sa')),

Performing dvirvacana
do_dvirvacana is an unparameterized operator defined separately.
('6.1.8', None, ~f('abhyasta'), 'li~w', do_dvirvacana),

Vowel substitution
_6_4_77 is an unparameterized operator defined separately.
('6.4.77', None, snu_dhatu_yvor, None, _6_4_77),

Replacing 'jh' with 'a'
('7.1.3', None, None, None, O.replace('J', 'ant')),

Those familiar with these rules will wonder why so much crucial information
is missing (e.g. that the center context in 7.1.3 should be a pratyaya).
This information is supplied in a special decorator, which we discuss now.

@inherit

When an Ashtadhyayi object is created, the
system searches through all modules for functions decorated with the
inherit() decorator. These functions create and return
a list of rule tuples. An example:

@inherit(None, F.raw('Sap'), None)
def sap_lopa():
 return [
 ('2.4.71', F.gana('a\da~'), None, None, 'lu~k'),
 ('2.4.74', F.gana('hu\\'), None, None, 'Slu~')
]

inherit() takes at least 3 arguments, which correspond
to the three contexts (left, center, and right). These arguments define
base filters that are “and”-ed with all of the returned
tuples. If the context in some rule tuple is None, the system uses just
the base filter. That is, the rules above will take the following form:

('2.4.71', F.gana('a\da~'), F.raw('Sap'), None, 'lu~k'),
('2.4.74', F.gana('hu\\'), F.raw('Sap'), None, 'Slu~')

Rule conditions

The majority of the Ashtadhyayi’s rules consists of some context window and an
operator. But many rules are modified by some other term, such as na
(blocking) or vibhāṣā (optionality). These terms are defined as subclasses
of RuleTuple:

'iṭ' augment denied
Na('7.2.8', None, None, f('krt') & F.adi('vaS'), U('iw')),

#: Denied in another context
Ca('7.2.9', None, f('krt') & titutra, None, True),

Converting tuples to rules

To interpret a rule tuple, we need:

	the tuple itself

	the previous tuple

	any base filters defined in the inherit() function.

These are combined as described above. For details, see
vyakarana.inference.create_rules().

 API

API

Lists

vyakarana.lists

Lists of various terms, designations, and sounds. Some of these
lists could probably be inferred programmatically, but for the sake
of basic sanity these are encoded explicitly. Thankfully these lists
are rather small.

	license:	MIT and BSD

	
vyakarana.lists.DHATUKA = ['sarvadhatuka', 'ardhadhatuka']

	saṃjñā for verb suffixes

	
vyakarana.lists.IT = set(['wvit', 'Git', 'adit', 'odit', 'Sit', 'anudattet', 'kit', 'Yit', 'wit', 'xdit', 'Udit', 'qit', 'pit', 'qvit', 'anudatta', 'Rit', 'svarita', 'idit', 'Kit', 'fdit', 'svaritet', 'cit', 'udit', 'mit', 'Nit'])

	Technical designations (1.3.2 - 1.3.9)

	
vyakarana.lists.KARAKA = ['karta', 'karma', 'karana', 'adhikarana', 'sampradana', 'apadana']

	saṃjñā for kāraka relations (currently unused)

	
vyakarana.lists.LA = set(['la~w', 'li~N', 'lf~N', 'le~w', 'lu~N', 'lo~w', 'lu~w', 'li~w', 'la~N', 'lf~w'])

	Abstract suffixes that are replaced with items from TIN.
Collectively, they are called the “lakāra” or just “la”.

	
vyakarana.lists.PADA = ['parasmaipada', 'atmanepada']

	saṃjñā for verb ‘pada’

	
vyakarana.lists.PRATYAYA = set(['la~w', 'lf~N', 'Snam', 'SnA', 'Slu', 'lu~N', 'lo~w', 'la~N', 'li~w', 'Sa', 'lf~w', 'lup', 'li~N', 'Sap', 'le~w', 'Rin', 'Snu', 'u', 'Syan', 'lu~w', 'luk', 'Ric'])

	Various pratyaya

	
vyakarana.lists.PURUSHA = ['prathama', 'madhyama', 'uttama']

	saṃjñā for various persons

	
vyakarana.lists.SAMJNA = set(['pada', 'atmanepada', 'abhyasta', 'vrddhi', 'ekavacana', 'prathama', 'saptami', 'sarvadhatuka', 'bahuvacana', 'apadana', 'caturthi', 'dhatu', 'ardhadhatuka', 'guna', 'tin', 'dvitiya', 'parasmaipada', 'pratyaya', 'sup', 'madhyama', 'pancami', 'sampradana', 'uttama', 'dvivacana', 'sasthi', 'abhyasa', 'karta', 'anga', 'karana', 'trtiya', 'krt', 'adhikarana', 'taddhita', 'karma'])

	All saṃjñā

	
vyakarana.lists.SOUNDS = set(['ac', 'yaY', 'Sar', 'Jay', 'S', 'ak', 'am', 'wu~', 'ec', 'yaR', 'ik', 'at', 'aw', 'vaS', 'et', 'ic', 'haS', 'ku~', 'eN', 'Ft', 'val', 'cu~', 'iR', 'JaS', 'yar', 'yam', 'Kar', 'aR', 'sal', 'Nam', 'Kay', 'ral', 'Jar', 'ft', 'baS', 'tu~', 'may', 'Ut', 'Baz', 'Cav', 'Jaz', 'it', 'pu~', 'x', 'yay', 'Ot', 'a', 'f', 'i', 'ut', 'jaS', 'It', 'Ec', 'hal', 'al', 'Jal', 'u', 'At', 'uk', 'car', 'Et', 'ot'])

	A collection of various sounds, including:

	savarṇa sets (1.1.69)

	single-item sets (1.1.70)

	pratyāhāra (1.1.71)

	
vyakarana.lists.TIN = ['tip', 'tas', 'Ji', 'sip', 'Tas', 'Ta', 'mip', 'vas', 'mas', 'ta', 'AtAm', 'Ja', 'TAs', 'ATAm', 'Dvam', 'iw', 'vahi', 'mahiN']

	Defined in rule 3.4.78. These 18 affixes are used to form verbs.
The first 9 are called “parasmaipada” (1.4.99), and the last 9 are
called “ātmanepada” (1.4.100).

	
vyakarana.lists.VACANA = ['ekavacana', 'dvivacana', 'bahuvacana']

	saṃjñā for various numbers

	
vyakarana.lists.VIBHAKTI = ['prathama', 'dvitiya', 'trtiya', 'caturthi', 'pancami', 'sasthi', 'saptami']

	saṃjñā for case triplets

Inputs and Outputs

	
class vyakarana.terms.Upadesha(raw=None, **kw)

	A term with indicatory letters.

	
data

	The term`s data space. A given term is represented in a
variety of ways, depending on the circumstance. For example,
a rule might match based on a specific upadeśa (including
‘it’ letters) in one context and might match on a term’s
final sound (excluding ‘it’ letters) in another.

	
samjna

	The set of markers that apply to this term. Although the
Ashtadhyayi distinguishes between samjna and it tags,
the program merges them together. Thus this set might
contain both 'kit' and 'pratyaya'.

	
lakshana

	The set of values that this term used to have. Technically,
only pratyaya need to have access to this information.

	
ops

	The set of rules that have been applied to this term. This
set is maintained for two reasons. First, it prevents us
from redundantly applying certain rules. Second, it supports
painless rule blocking in other parts of the grammar.

	
parts

	The various augments that have been added to this term. Some
examples:

	'aw' (verb prefix for past forms)

	'iw' (‘it’ augment on suffixes)

	'vu~k' (‘v’ for ‘BU’ in certain forms)

	
static as_anga(*a, **kw)

	Create the upadesha then mark it as an 'anga'.

	
static as_dhatu(*a, **kw)

	Create the upadesha then mark it as a 'dhatu'.

	
adi

	The term’s first sound, or None if there isn’t one.

	
antya

	The term’s last sound, or None if there isn’t one.

	
asiddha

	The term’s value in the asiddha space.

	
asiddhavat

	The term’s value in the asiddhavat space.

	
clean

	The term’s value without svaras and anubandhas.

	
raw

	The term’s raw value.

	
upadha

	The term’s penultimate sound, or None if there isn’t one.

	
value

	The term’s value in the siddha space.

	
add_lakshana(*names)

	

	Parameters:	names – the lakshana to add

	
add_op(*names)

	

	Parameters:	names – the ops to add

	
add_part(*names)

	

	Parameters:	names – the parts to add

	
add_samjna(*names)

	

	Parameters:	names – the samjna to add

	
any_samjna(*names)

	

	Parameters:	names –

	
get_at(locus)

	

	Parameters:	locus –

	
remove_samjna(*names)

	

	Parameters:	names – the samjna to remove

	
set_asiddha(asiddha)

	

	Parameters:	asiddha – the new asiddha value

	
set_asiddhavat(asiddhavat)

	

	Parameters:	asiddhavat – the new asiddhavat value

	
set_at(locus, value)

	

	Parameters:	
	locus –

	value –

	
set_raw(raw)

	

	Parameters:	raw – the new raw value

	
set_value(value)

	

	Parameters:	value – the new value

	
class vyakarana.derivations.State(terms=None, history=None)

	A sequence of terms.

This represents a single step in some derivation.

	
terms

	A list of terms.

Filters

vyakarana.filters

Excluding paribhāṣā, all rules in the Ashtadhyayi describe a context
then specify an operation to apply based on that context. Within
this simulator, a rule’s context is defined using filters, which
return a true or false value for a given index within some state.

This module defines a variety of parameterized and unparameterized
filters, as well as as some basic operators for combining filters.

	license:	MIT and BSD

	
class vyakarana.filters.Filter(*args, **kw)

	Represents a “test” on some input.

Most of the grammar’s rules have preconditions. For example, the
rule that inserts suffix śnam applies only if the input contains
a root in the rudh group. This class makes it easy to define
these preconditions and ensure that rules apply in their proper
contexts. Since these conditions filter out certain inputs, these
objects are called filters.

Originally, filters were defined as ordinary functions. But classes
have one big advantage: they let us define custom operators, like
&, |, and ~. These operators give us a terse way to
create more complex conditions, e.g. al('hal') & upadha('a').

	
category = None

	The filter type. For example, a filter on the first letter
of a term has the category adi.

	
name = None

	A unique name for the filter. This is used as a key to the
filter cache. If a filter has no parameters, this is the
same as self.category.

	
body = None

	The function that corresponds to this filter. The input and
output of the function depend on the filter class. For
a general Filter, this function accepts a state and
index and returns True or False.

	
domain = None

	A collection that somehow characterizes the domain of the
filter. Some examples:

	for an al filter, the set of matching letters

	for a samjna filter, the set of matching samjna

	for a raw filter, the set of matching raw values

	for an and/or/not filter, the original filters

	
classmethod no_params(fn)

	Decorator constructor for unparameterized filters.

	Parameters:	fn – some filter function.

	
supersets

	Return some interesting supersets of this filter.

Consider a universal set that contains every possible element.
A filter defines a subset of the universal set, i.e. the set of
items for which the filter returns True. Thus every filter
defines a set. For two filters f1 and f2:

	f1 & f2 is like an intersection of two sets

	f1 | f2 is like a union of two sets

	~f1 is like an “antiset”

Now consider a filter f composed of n intersecting filters:

f = f1 & f2 & ... & fn

This function returns the n filters that compose f. Each
fi is essentially a superset of f.

“Or” and “not” filters are tough to break up, so they’re
treated as indivisible.

	
subset_of(other)

	Return whether this filter is a subset of some other filter.

All members of some subset S are in the parent set O. So if it
is the case that:

S applies -> O applies

then S is a subset of P. For the “set” interpretation of a
filter, see the comments on supersets().

	Parameters:	other – a filter

	
class vyakarana.filters.TermFilter(*args, **kw)

	A Filter whose body takes an Upadesha as input.

Term filters give us:

	Convenience. Most filters apply to just a single term.

	Performance. Since we can guarantee that the output of a term
filter will change only if its term changes, we can cache results
for an unchanged term and avoid redundant calls.

	
class vyakarana.filters.AlFilter(*args, **kw)

	A filter that tests letter properties.

	
class vyakarana.filters.adi(*args, **kw)

	Filter on a term’s first sound.

	
class vyakarana.filters.al(*args, **kw)

	Filter on a term’s final sound.

	
class vyakarana.filters.contains(*args, **kw)

	Filter on whether a term has a certain sound.

	
class vyakarana.filters.dhatu(*args, **kw)

	Filter on whether a term represents a particular dhatu.

	
vyakarana.filters.gana(start, end=None)

	Return a filter on whether a term is in a particular dhatu set.

	Parameters:	
	start – the raw value of the first dhatu in the list

	end – the raw value of the last dhatu in the list. If
None, use all roots from start to the end of
the gana.

	
class vyakarana.filters.lakshana(*args, **kw)

	Filter on a term’s prior values.

	
class vyakarana.filters.part(*args, **kw)

	Filter on a term’s augments.

	
class vyakarana.filters.raw(*args, **kw)

	Filter on a term’s raw value.

	
class vyakarana.filters.samjna(*args, **kw)

	Filter on a term’s designations.

	
class vyakarana.filters.upadha(*args, **kw)

	Filter on a term’s penultimate sound.

	
class vyakarana.filters.value(*args, **kw)

	Filter on a term’s current value.

	
vyakarana.filters.auto(*data)

	Create a new Filter using the given data.

Most of the terms in the Ashtadhyayi have obvious interpretations
that can be inferred from context. For example, a rule that
contains the word dhātoḥ clearly refers to a term with dhātu as
a saṃjñā, as opposed to a term with dhātu as its current value.
In that example, it’s redundant to have to specify that
F.samjna('dhatu') is a samjna filter.

This function accepts a string argument and returns the appropriate
filter. If multiple arguments are given, the function returns the
“or” of the corresponding filters. If the argument is a function,
it remains unprocessed.

	Parameters:	data – arbitrary data, usually a list of strings

Operators

vyakarana.operators

Excluding paribhāṣā, all rules in the Ashtadhyayi describe a context
then specify an operation to apply based on that context. Within
this simulator, operations are defined using operators, which
take some (state, index) pair and return a new state.

This module defines a variety of parameterized and unparameterized
operators.

	license:	MIT and BSD

	
class vyakarana.operators.Operator(*args, **kw)

	A callable class that returns states.

	
category = None

	The operator type. For example, a substitution operator has
category tasya.

	
name = None

	A unique name for this operator. If the operator is not
parameterized, then this is the same as self.category.

	
body = None

	The function that corresponds to this operator. The input
and output of the function depend on the operator class. For
a general Operator, this function accepts a state
and index and returns a new state.

	
params = None

	the operator’s parameters, if any.

	
classmethod parameterized(fn)

	Decorator constructor for parameterized operators.

	Parameters:	fn – a function factory. It accepts parameters and returns
a parameterized operator function.

	
classmethod no_params(fn)

	Decorator constructor for unparameterized operators.

	Parameters:	fn – some operator function

	
conflicts_with(other)

	Return whether this operator conflicts with another.

Two operators are in conflict if any of the following hold:

	they each insert something into the state

	one prevents or nullifies the change caused by the other. By
“nullify” I mean that the result is as if neither operator
was applied.

For example, two insert operators are always in conflict. And
hrasva and dirgha are in conflict, since hrasva undoes
dirgha. But hrasva and guna are not in conflict, since
neither blocks or nullifies the other.

	Parameters:	other – an operator

	
class vyakarana.operators.DataOperator(*args, **kw)

	An operator whose body modifies a term’s data.

body accepts and returns a single string.

Rules and Rule Stubs

	
class vyakarana.rules.Rule(name, window, operator, modifier=None, category=None, locus='value', optional=False)

	A single rule from the Ashtadhyayi.

Rules are of various kinds. Currently, the system deals only with
transformational rules (“vidhi”) explicitly.

	
VIDHI = 'vidhi'

	Denotes an ordinary rule

	
SAMJNA = 'samjna'

	Denotes a saṃjñā rule

	
ATIDESHA = 'atidesha'

	Denotes an atideśa rule

	
PARIBHASHA = 'paribhasha'

	Denotes a paribhāṣā rule

	
name = None

	A unique ID for this rule, e.g. '6.4.1'. For most rules,
this is just the rule’s position within the Ashtadhyayi.
But a few rules combine multiple rules and have hyphenated
names, e.g. '1.1.60 - 1.1.63'.

	
filters = None

	A list of filter functions to apply to some subsequence in
a state. If the subsequence matches, then we can apply the
rule to the appropriate location in the state..

	
operator = None

	An operator to apply to some part of a state.

	
locus = None

	

	
optional = None

	Indicates whether or not the rule is optional

	
utsarga = None

	A list of rules. These rules are all blocked if the current
rule can apply.

	
apply(state, index)

	Apply this rule and yield the results.

	Parameters:	
	state – a state

	index – the index where the first filter is applied.

	
has_apavada(other)

	Return whether the other rule is an apavada to this one.

Rule B is an apavada to rule A if and only if:

	A != B

	If A matches some position, then B matches too.

	A and B have the same locus

	The operations performed by A and B are in conflict

For details on what (4) means specifically, see the comments on
operators.Operator.conflicts_with().

	Parameters:	other – a rule

vyakarana.templates

This module contains classes and functions that let us define
the Ashtadhyayi’s rules as tersely as possible.

	license:	MIT and BSD

	
class vyakarana.templates.RuleStub(name, left, center, right, op, **kw)

	Bases: object

Wrapper for tuple rules.

The Ashtadhyayi uses a variety of terms to control when and how a
rule applies. For example, ‘anyatarasyām’ denotes that a rule
specifies an optional operation that can be accepted or rejected.

In this system, these terms are marked by wrapping a rule in this
class or one of its subclasses.

	
name = None

	Thte rule name

	
window = None

	The rule context

	
operator = None

	The rule operator

	
class vyakarana.templates.Ca(name, left, center, right, op, **kw)

	Bases: vyakarana.templates.RuleStub

Wrapper for a rule that contains the word “ca”.

“ca” has a variety of functions, but generally it preserves parts
of the previous rule in the current rule.

	
class vyakarana.templates.Na(name, left, center, right, op, **kw)

	Bases: vyakarana.templates.RuleStub

Wrapper for a rule that just blocks other rules.

	
class vyakarana.templates.Nityam(name, left, center, right, op, **kw)

	Bases: vyakarana.templates.RuleStub

Wrapper for a rule that cannot be rejected.

This is used to cancel earlier conditions.

	
class vyakarana.templates.Option(name, left, center, right, op, **kw)

	Bases: vyakarana.templates.RuleStub

Wrapper for a rule that can be accepted optionally.

This is a superclass for a variety of optional conditions.

	
class vyakarana.templates.Anyatarasyam(name, left, center, right, op, **kw)

	Bases: vyakarana.templates.Option

Wrapper for a rule that is indifferently accepted.

Modern scholarship rejects the traditional definition of anyatarasyām,
but this system treats it as just a regular option.

	
class vyakarana.templates.Va(name, left, center, right, op, **kw)

	Bases: vyakarana.templates.Option

Wrapper for a rule that is preferably accepted.

Modern scholarship rejects the traditional definiton of vā, but
this system treats it as just a regular option.

	
class vyakarana.templates.Vibhasha(name, left, center, right, op, **kw)

	Bases: vyakarana.templates.Option

Wrapper for a rule that is preferably not accepted.

Modern scholarship rejects the traditional definiton of vibhāṣā,
but this system treats it as just a regular option.

	
class vyakarana.templates.Artha(name, left, center, right, op, **kw)

	Bases: vyakarana.templates.Option

Wrapper for a rule that applies only in some semantic condition.

Since the semantic condition can be declined, this is essentially
an optional provision.

	
class vyakarana.templates.Opinion(name, left, center, right, op, **kw)

	Bases: vyakarana.templates.Option

Wrapper for a rule that is accepted by prior opinion.

Since the opinion can be declined, this is essentially the same as
an optional provision.

	
vyakarana.templates.Shesha = <object object>

	Signals use of the śeṣa device, which affects utsarga-apavāda
inference.

Texts

	
class vyakarana.ashtadhyayi.Ashtadhyayi(stubs=None)

	Given some input terms, yields a list of Sanskrit words.

This is the most abstract part of the system and doesn’t expect any
internal knowledge about how the system works. This is almost always
the only class that client libraries should use.

The heart of the class is derive(), which accepts a list of
terms and yields State objects that
represent finished words.

	
derive(sequence)

	Yield all possible results.

	Parameters:	sequence – a starting sequence

	
rule_tree = None

	Indexed arrangement of rules

	
classmethod with_rules_in(start, end, **kw)

	Constructor using only a subset of the Ashtadhyayi’s rules.

This is provided to make it easier to test certain rule groups.

	Parameters:	
	start – name of the first rule to use, e.g. “1.1.1”

	end – name of the last rule to use, e.g. “1.1.73”

	
class vyakarana.dhatupatha.Dhatupatha(filename=None)

	A collection of all verb roots in the Sanskrit language.

This class makes it easy to select a continuous range of roots from
the Dhātupāṭha and query for other properties of interest, such as
the original gaṇa.

All data is stored in a CSV file, which is read when the program
begins.

The Dhātupāṭha is traditionally given as a list of roots, each
stated in upadeśa with a basic gloss. An example:

1.1 bhū sattāyām

The first number indicates the root gaṇa, of which there are ten.
This gaṇa determines the form that the root takes when followed by
sārvadhātuka affixes. The second number indicates the root’s
relative position within the gaṇa.

Although few modern editions of the text have accent markings, the
Sanskrit grammatical tradition has preserved the original accents
all of the original items. Per the conventions of SLP1, these are
written as follows:

	Accent
	SLP1
	Devanagari
	IAST

	udātta
	(no mark)
	
	

	anudātta
	\
	
	

	svarita
	^
	
	

	
all_dhatu = None

	List of all dhatu, one for each row in the original CSV file.

	
dhatu_list(start, end=None)

	Get an inclusive list of of dhatus.

	Parameters:	
	start – the first dhatu in the list

	end – the last dhatu in the list. If None, add until
the end of the gana.

	
index_map = None

	Maps a dhatu to its indices in self.all_dhatu.

	
init(filename)

	

	Parameters:	filename – path to the Dhatupatha file

 Python Module Index

 Python Module Index

 v

 		 	

 		
 v	

 	[image: -]
 	
 vyakarana	

 	
 	
 vyakarana.filters	

 	
 	
 vyakarana.lists	

 	
 	
 vyakarana.operators	

 	
 	
 vyakarana.templates	

 Index

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	abhyasta

 	abhyāsa

 	add_lakshana() (vyakarana.terms.Upadesha method)

 	add_op() (vyakarana.terms.Upadesha method)

 	add_part() (vyakarana.terms.Upadesha method)

 	add_samjna() (vyakarana.terms.Upadesha method)

 	adi (class in vyakarana.filters)

 	(vyakarana.terms.Upadesha attribute)

 	al (class in vyakarana.filters)

 	AlFilter (class in vyakarana.filters)

 	all_dhatu (vyakarana.dhatupatha.Dhatupatha attribute)

 	antya (vyakarana.terms.Upadesha attribute)

 	anubandha

 	any_samjna() (vyakarana.terms.Upadesha method)

 	
 	Anyatarasyam (class in vyakarana.templates)

 	aṅga

 	apply() (vyakarana.rules.Rule method)

 	Artha (class in vyakarana.templates)

 	as_anga() (vyakarana.terms.Upadesha static method)

 	as_dhatu() (vyakarana.terms.Upadesha static method)

 	Ashtadhyayi

 	(class in vyakarana.ashtadhyayi)

 	asiddha (vyakarana.terms.Upadesha attribute)

 	asiddhavat (vyakarana.terms.Upadesha attribute)

 	Aṣṭādhyāyī

 	ATIDESHA (vyakarana.rules.Rule attribute)

 	auto() (in module vyakarana.filters)

 	ārdhadhātuka

 	ātmanepada

B

 	
 	base filter

 	
 	body (vyakarana.filters.Filter attribute)

 	(vyakarana.operators.Operator attribute)

C

 	
 	Ca (class in vyakarana.templates)

 	category (vyakarana.filters.Filter attribute)

 	(vyakarana.operators.Operator attribute)

 	
 	center context

 	clean (vyakarana.terms.Upadesha attribute)

 	conflicts_with() (vyakarana.operators.Operator method)

 	contains (class in vyakarana.filters)

D

 	
 	data (vyakarana.terms.Upadesha attribute)

 	DataOperator (class in vyakarana.operators)

 	derive() (vyakarana.ashtadhyayi.Ashtadhyayi method)

 	dhatu (class in vyakarana.filters)

 	dhatu_list() (vyakarana.dhatupatha.Dhatupatha method)

 	
 	DHATUKA (in module vyakarana.lists)

 	Dhatupatha

 	(class in vyakarana.dhatupatha)

 	dhātu

 	Dhātupāṭha

 	domain (vyakarana.filters.Filter attribute)

F

 	
 	filter

 	
 	Filter (class in vyakarana.filters)

 	filters (vyakarana.rules.Rule attribute)

G

 	
 	gana() (in module vyakarana.filters)

 	
 	get_at() (vyakarana.terms.Upadesha method)

 	guṇa

H

 	
 	has_apavada() (vyakarana.rules.Rule method)

I

 	
 	index_map (vyakarana.dhatupatha.Dhatupatha attribute)

 	init() (vyakarana.dhatupatha.Dhatupatha method)

 	
 	it

 	IT (in module vyakarana.lists)

K

 	
 	KARAKA (in module vyakarana.lists)

 	
 	kit

L

 	
 	LA (in module vyakarana.lists)

 	lakshana (class in vyakarana.filters)

 	(vyakarana.terms.Upadesha attribute)

 	
 	left context

 	locus (vyakarana.rules.Rule attribute)

M

 	
 	metarule

 	
 	mit

N

 	
 	Na (class in vyakarana.templates)

 	name (vyakarana.filters.Filter attribute)

 	(vyakarana.operators.Operator attribute)

 	(vyakarana.rules.Rule attribute)

 	(vyakarana.templates.RuleStub attribute)

 	
 	Nityam (class in vyakarana.templates)

 	no_params() (vyakarana.filters.Filter class method)

 	(vyakarana.operators.Operator class method)

 	ñit

 	ṅit

 	ṇit

O

 	
 	operator

 	Operator (class in vyakarana.operators)

 	operator (vyakarana.rules.Rule attribute)

 	(vyakarana.templates.RuleStub attribute)

 	
 	Opinion (class in vyakarana.templates)

 	ops (vyakarana.terms.Upadesha attribute)

 	Option (class in vyakarana.templates)

 	optional (vyakarana.rules.Rule attribute)

 	ordinary rule

P

 	
 	PADA (in module vyakarana.lists)

 	parameterized() (vyakarana.operators.Operator class method)

 	params (vyakarana.operators.Operator attribute)

 	parasmaipada

 	PARIBHASHA (vyakarana.rules.Rule attribute)

 	
 	part (class in vyakarana.filters)

 	parts (vyakarana.terms.Upadesha attribute)

 	pit

 	pratyaya

 	PRATYAYA (in module vyakarana.lists)

 	PURUSHA (in module vyakarana.lists)

R

 	
 	raw (class in vyakarana.filters)

 	(vyakarana.terms.Upadesha attribute)

 	remove_samjna() (vyakarana.terms.Upadesha method)

 	right context

 	
 	Rule (class in vyakarana.rules)

 	rule tuple

 	rule_tree (vyakarana.ashtadhyayi.Ashtadhyayi attribute)

 	RuleStub (class in vyakarana.templates)

S

 	
 	samjna (class in vyakarana.filters)

 	SAMJNA (in module vyakarana.lists)

 	(vyakarana.rules.Rule attribute)

 	samjna (vyakarana.terms.Upadesha attribute)

 	saṃjñā

 	sārvadhātuka

 	set_asiddha() (vyakarana.terms.Upadesha method)

 	set_asiddhavat() (vyakarana.terms.Upadesha method)

 	set_at() (vyakarana.terms.Upadesha method)

 	
 	set_raw() (vyakarana.terms.Upadesha method)

 	set_value() (vyakarana.terms.Upadesha method)

 	Shesha (in module vyakarana.templates)

 	SOUNDS (in module vyakarana.lists)

 	State (class in vyakarana.derivations)

 	sthānī

 	subset_of() (vyakarana.filters.Filter method)

 	supersets (vyakarana.filters.Filter attribute)

 	śit

T

 	
 	TermFilter (class in vyakarana.filters)

 	terms (vyakarana.derivations.State attribute)

 	
 	TIN (in module vyakarana.lists)

 	tiṅ

 	ṭit

U

 	
 	Upadesha (class in vyakarana.terms)

 	upadeśa

 	
 	upadha (class in vyakarana.filters)

 	(vyakarana.terms.Upadesha attribute)

 	utsarga (vyakarana.rules.Rule attribute)

V

 	
 	Va (class in vyakarana.templates)

 	VACANA (in module vyakarana.lists)

 	value (class in vyakarana.filters)

 	(vyakarana.terms.Upadesha attribute)

 	vibhakti

 	VIBHAKTI (in module vyakarana.lists)

 	
 	Vibhasha (class in vyakarana.templates)

 	VIDHI (vyakarana.rules.Rule attribute)

 	vṛddhi

 	vyakarana.filters (module)

 	vyakarana.lists (module)

 	vyakarana.operators (module)

 	vyakarana.templates (module)

W

 	
 	window (vyakarana.templates.RuleStub attribute)

 	
 	with_rules_in() (vyakarana.ashtadhyayi.Ashtadhyayi class method)

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Vyakarana Documentation

 		Introduction

 		The Ashtadhyayi

 		The Dhatupatha

 		Rule Types

 		Ordinary rules

 		Substituting

 		Designating

 		Inserting

 		Blocking

 		Other rules

 		Metarules

 		Interpreting

 		Contextualizing

 		Terms and Data

 		Sounds

 		Saṃjñā

 		it tags

 		Usage

 		Sounds

 		Savarṇa sets

 		Single vowels

 		Pratyāhāra

 		asiddha and asiddhavat

 		asiddha

 		asiddhavat

 		Glossary

 		Sanskrit

 		English

 		it tags

 		Design Overview

 		Philosophy

 		How the program works

 		Inputs and Outputs

 		Terms

 		Data spaces

 		States

 		Modeling Rules

 		Filters

 		Parameterized filters

 		Combining filters

 		Operators

 		Parameterized operators

 		Selecting Rules

 		Rank

 		Conflict resolution

 		Defining Rules
